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АННОТАЦИЯ

Статья посвящена исследованию возможностей применения методов интеллектуального анализа данных и 
биоинспирированных алгоритмов оптимизации при управлении возвратами товаров в электронной коммерции. В 
работе предлагается архитектура системы поддержки принятия решений (СППР), ориентированной на решение 
задач многокритериальной оптимизации возвратных маршрутов и классификацию причин возвратов. Показано, 
что применение биоэвристики позволяет формировать устойчивые и сбалансированные маршруты с учётом 
расстояния, времени и сложности логистической сети, а использование нечеткого случайного леса обеспечивает 
интерпретируемый анализ субъективных и неполных клиентских данных. Предложенная архитектура 
СППР демонстрирует высокую гибкость, масштабируемость и возможность интеграции с логистическими  
платформами и WMS-системами, обеспечивая комплексную поддержку процессов анализа возвратных потоков. 
Рассмотрена экономическая эффективность внедрения системы, включающая снижение логистических затрат, 
уменьшение числа необоснованных возвратов и повышение качества клиентского сервиса. 
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ANNOTATION

The article is devoted to the study of the possibilities of using intelligent data analysis methods and bioinspired 
optimization algorithms in the management of returns in e-commerce. The paper proposes the architecture of a decision 
support system (DSS) that combines an earthworm algorithm for multi-criteria optimization of return routes and a fuzzy 
random forest for classifying the causes of returns. It is shown that the use of bioheuristics makes it possible to form 
stable and balanced routes taking into account the distance, time and complexity of the logistics network, and the use 
of a fuzzy random forest provides an interpretable analysis of subjective and incomplete customer data. The proposed 
DSS architecture demonstrates high flexibility, scalability, and the ability to integrate with logistics platforms and WMS, 
providing comprehensive support for return flow analysis. The economic efficiency of the implementation of the system 
is considered, including reducing logistical costs, reducing the number of unjustified refunds and improving the quality 
of customer service.
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Введение 

Рост объёмов электронной коммерции сопровождается увеличением количества возвратов, 
что приводит к существенным затратам для торговых платформ, логистических операторов 
и производителей [1]. Управление возвратами является сложным процессом, связывающим 
задачи классификации причин возврата и оптимизации логистических маршрутов. 
Традиционные методы анализа данных часто оказываются недостаточно эффективными из-за 
значительной неопределённости в пользовательской информации, а классические алгоритмы 
маршрутизации не всегда обеспечивают достаточную адаптивность при изменении условий.

Современные методы интеллектуального анализа данных и биоинспирированные 
алгоритмы оптимизации открывают новые возможности для разработки систем поддержки 
принятия решений (СППР), ориентированных на решение задач многокритериальной 
оптимизации маршрутов возвратов и классификацию их причин.

Целью данной статьи является разработка архитектуры СППР, в которой алгоритм 
дождевых червей применяется для построения рационального возвратного маршрута, а 
нечеткий случайный лес – для классификации причин возврата товаров.

1. Применение алгоритма дождевых червей для оптимизации 
маршрутов возврата товара в электронной коммерции 

Современная логистика возвратов в электронной коммерции характеризуется высокой 
вариативностью условий, ростом объёмов обратных поставок и необходимостью учитывать 
несколько противоречивых критериев при выборе оптимального маршрута. Одновременно 
минимизировать затраты, время транспортировки и маршрутную сложность невозможно, 
что приводит к необходимости искать компромиссные решения. Задача построения  
рациональных маршрутов возврата товаров в электронной коммерции относится к классу 
комбинаторных оптимизационных задач, в частности, к обобщениям задачи коммивояжёра 
(Traveling Salesman Problem, TSP) с дополнительными ограничениями и несколькими 
критериями оптимальности. 

К настоящему моменту предложено значительное количество методов решения 
подобных задач. К классическим подходам относятся точные методы математического  
программирования, включая целочисленное линейное программирование, методы ветвей и 
границ, а также динамическое программирование. Несмотря на их теоретическую строгость, 
данные методы применимы лишь к задачам малой размерности, поскольку вычислительная 
сложность резко возрастает при увеличении числа узлов и критериев оптимизации. В условиях 
реальных логистических сетей электронной коммерции, характеризующихся высокой 
размерностью и изменчивостью параметров, использование точных методов оказывается 
практически невозможным.

В связи с этим в последние годы в мировой и отечественной научной практике широкое 
распространение получили метаэвристические алгоритмы, в частности алгоритмы имитации 
отжига (Simulated annealing, SA) [2], муравьиной колонии (Ant Colony Optimization, ACO) [3] 
и роя частиц (Particle Swarm Optimization, PSO) [4]. Указанные методы активно применяются 
для решения задачи коммивояжёра и её многокритериальных обобщений, а также задач 
маршрутизации, в том числе в логистических приложениях. Их ключевым преимуществом 
является способность эффективно исследовать большие пространства решений без полного 
перебора, сочетая глобальный поиск и локальное улучшение решений, что подтверждается 
результатами сравнительного анализа, представленными в [5].

Вместе с тем анализ результатов вычислительных экспериментов показывает, что  
указанные метаэвристики обладают и рядом ограничений [6]. В частности, алгоритмы  
имитации отжига и муравьиной колонии демонстрируют чувствительность к выбору 
параметров и при определённых настройках могут преждевременно сходиться к локальным 
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экстремумам. Алгоритмы роя частиц, обеспечивая высокую скорость сходимости на 
начальных этапах поиска, на поздних стадиях часто теряют разнообразие популяции, что 
снижает качество получаемых решений. Данные особенности подробно проанализированы 
в упомянутой ранее статье, где показано, что эффективность перечисленных методов при 
решении задачи коммивояжёра существенно зависит от способности поддерживать баланс 
между исследованием пространства решений и эксплуатацией найденных маршрутов.  
В задачах возвратной логистики, характеризующихся высокой размерностью и 
сложной структурой пространства перестановок, указанные ограничения приобретают  
принципиальное значение.

В задачах возвратной логистики, где оптимальные маршруты могут существенно 
различаться по структуре и располагаться в удалённых областях пространства 
перестановок, данные ограничения приобретают критический характер. В этом контексте 
перспективным направлением исследований являются новые биоинспирированные 
алгоритмы, ориентированные на более устойчивый баланс между глобальным и 
локальным поиском. Одним из таких методов является алгоритм дождевых червей  
(Earthworm Optimization Algorithm, EWA) [7], представляющий собой биоинспирированную 
метаэвристику, основанную на двух типах воспроизводства дождевых червей и  
механизмах их регенерации.

Алгоритм дождевых червей основан на биологических особенностях этих организмов, 
прежде всего на их способности к двум формам «размножения» и к регенерации.  
В естественной среде дождевые черви выступают гермафродитами, поэтому каждая особь 
может порождать потомство самостоятельно (данный принцип отражён в механизме 
Reproduction 1). В алгоритме упрощённо считается, что червь может порождать потомка 
сам, хотя в природе требуется партнёр. В то же время взаимодействие нескольких червей 
приводит к обмену генетическим материалом и появлению разных вариантов потомков, что 
моделируется механизмом Reproduction 2. Существенным является и то, что многие виды 
способны восстанавливать утраченные сегменты тела, что аналогично созданию новых 
решений путём комбинирования параметров предыдущих.

Алгоритм EWA реализует популяционную стратегию: набор решений постепенно 
эволюционирует от поколения к поколению. Первый механизм, Reproduction 1, формирует 
новое решение, опираясь на одного родителя (степень его схожести с исходным экземпляром 
определяется параметром α). Второй механизм, Reproduction 2, задействует несколько 
родителей, объединяя их свойства через различные типы кроссоверов и генерируя один или 
несколько промежуточных потомков. Эти потомки затем агрегируются в итоговое решение  
с учётом весовой схемы, где веса рассчитываются на основании их качественных  
характеристик, усиливая влияние более перспективных вариантов. Параметр β управляет 
относительной значимостью двух механизмов размножения и уменьшается от поколения к 
поколению по закону геометрического затухания, что повышает интенсивность локального 
поиска. Однако при увеличении β повышается интенсивность глобального поиска. Кроме 
того, используется мутационный оператор на основе распределения Коши, позволяющий 
изредка вносить существенные изменения в решение и, тем самым, улучшать исследование 
пространства. 

На рисунке 1 представлена блок-схема алгоритма дождевых червей, отражающая  
процесс эволюции популяции возможных решений.

Маршруты возврата представляются в виде перестановок промежуточных пунктов,  
через которые должен пройти возвращаемый товар. Начальная популяция формируется 
случайным образом, что обеспечивает охват широкого спектра возможных решений и 
позволяет алгоритму начинать поиск без предварительных ограничений. Задаются параметры 
α, определяющий интенсивность глобального поиска, и β, отвечающий за баланс между двух 
механизмов размножения при формировании новой позиции червя.
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Рис. 1 – Блок-схема биоинспирированного алгоритма дождевых червей
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Оценка приспособленности каждого маршрута осуществляется на основе трёх 
минимизируемых критериев: суммарной длины пути, временных затрат и сложности 
маршрута, которая отражает состояние дорожной инфраструктуры. Для сравнения  
альтернатив используется концепция Парето-доминирования, согласно которой маршрут 
считается недоминируемым, если не существует другого варианта, улучшающего хотя бы  
один из критериев без одновременного ухудшения остальных. Такие недоминируемые 
решения формируют Парето-фронт.

Механизм Reproduction 1 обеспечивает глобальный характер поиска. В нём параметр 
α определяет степень допустимого отклонения нового решения от исходного маршрута, 
благодаря чему при больших значениях α алгоритм способен совершать дальние переходы в 
пространстве решений и избегать преждевременной сходимости. 

В Reproduction  2 задействуется несколько родительских решений, которые порождают 
новые маршруты посредством различных схем кроссовера. Одновыборочный кроссовер 
создаёт новое решение за счёт перестановки отдельных частей маршрутов, многоточечный 
кроссовер позволяет обмениваться несколькими сегментами и формирует более  
разнообразные структуры, а равномерный кроссовер комбинирует узлы маршрутов 
покомпонентно. Такой подход способствует объединению перспективных фрагментов из 
разных родительских маршрутов и формированию более качественных траекторий.

Сформированные результаты объединяются с помощью параметра β, который  
постепенно уменьшается по мере развития вычислительного процесса. На ранних этапах 
это обеспечивает широкое исследование пространства, а на поздних происходит усиление 
локального поиска возле наиболее перспективных решений. Дополнительные адаптивные 
изменения обеспечиваются мутацией Коши, которая формирует редкие, но существенные 
модификации маршрутов. Благодаря «толстым хвостам» распределения Коши такие  
изменения позволяют алгоритму перескакивать в отдалённые области пространства  
решений и сохранять высокую степень разнообразия.

Завершается работа алгоритма после достижения максимального числа поколений. На 
этом этапе формируется Парето-фронт, отражающий множество недоминируемых решений, 
из которого выбираются маршруты, обеспечивающие наилучший баланс между длиной, 
временем и сложностью прохождения.

Построение рационального маршрута возврата товара между заданными пунктами  
сводится к задаче многокритериальной оптимизации, в которой требуется минимизировать 
совокупный показатель качества маршрута. 

Пусть маршрут представлен последовательностью городов X  =  (x1, x2, …, x15), где 
x1  – фиксированная начальная точка, а x15 – фиксированная конечная точка. Тогда 
многокритериальная задача формулируется следующим образом:

где f1(X) – суммарное расстояние маршрута (L), f2(X) – суммарное время прохождения 
маршрута (T), f3(X) – показатель сложности или рискованности маршрута (D).

При этом все три критерия подлежат минимизации, а их совместная оптимизация  
приводит к формированию множества недоминируемых решений, образующих  
Парето-фронт.

Одним из ключевых факторов, подтверждающих применимость EWA в сфере возвратной 
логистики, является способность алгоритма работать в условиях огромного пространства 
поиска. Маршрут возврата товара задаётся перестановкой промежуточных пунктов, что 
приводит к экспоненциальному росту числа возможных решений. Даже при сравнительно 
небольшом числе узлов, например, 13, получается почти 6,23 миллиардам потенциальных 
маршрутов. Полный перебор в таких условиях невозможен, а эффективность строгих 
оптимизационных методов резко падает с ростом размерности задачи. EWA, напротив, 
позволяет быстро находить перспективные решения, не требуя исчерпывающего анализа  
всех вариантов.

Не менее важна способность алгоритма сочетать глобальное исследование пространства 
и локальное улучшение найденных решений. Механизм Reproduction 1 способствует 
формированию маршрутов, значительно отличающихся от исходных, что позволяет 
исследовать широкие области пространства решений. Reproduction 2 ориентирован на 
локальные улучшения, объединяя сильные стороны нескольких родительских маршрутов 
и постепенно повышая их качество. Такое сочетание обеспечивает баланс между поиском  
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новых областей и совершенствованием уже найденных решений, что особенно ценно 
для логистических задач, где локальные структуры маршрутов могут быть критичны для 
эффективности доставки.

Особое значение имеет способность EWA учитывать противоречивость критериев. В 
реальных условиях возвратная логистика требует оптимизировать не один показатель, а 
несколько одновременно: общую протяженность пути, временные затраты и сложность 
прохождения отдельных участков. Улучшение одного критерия часто приводит к ухудшению 
другого, поэтому оптимизация приобретает многокритериальный характер. Предлагаемый 
EWA формирует множество Парето-оптимальных маршрутов, демонстрирующих различные 
компромиссы между расстоянием, временем и сложностью. Это обеспечивает гибкость 
при выборе наиболее подходящего решения с учётом конкретных логистических условий и 
ограничений.

Важным элементом алгоритма является мутационный оператор, основанный на 
распределении Коши. Он генерирует редкие, но значительные изменения маршрутов, 
что позволяет алгоритму избегать застревания в локальных минимумах и поддерживать 
разнообразие популяции [8]. Такое свойство особенно полезно в задачах маршрутизации, 
где качественные решения нередко расположены далеко друг от друга в пространстве 
перестановок.

В контексте логистики возвратов алгоритм дождевых червей способен моделировать 
широкий спектр возможных условий, охватывая различные конфигурации транспортной 
сети. При формировании матриц расстояний, времени и сложности EWA может анализировать 
большое количество альтернативных маршрутов и выявлять варианты, обеспечивающие 
наилучший баланс между ключевыми логистическими показателями. Это делает его 
эффективным инструментом для поддержки принятия решений при планировании  
возвратных логистических потоков.

Алгоритм способен последовательно улучшать качество решений, переходя от широкого 
исследования пространства на ранних этапах к локальному поиску вблизи наиболее 
перспективных маршрутов. Такая динамика позволяет оценивать структуру пространства 
решений, выявлять области с высокой концентрацией эффективных путей и формировать 
Парето-фронт, представляющий набор недоминируемых маршрутов с различным уровнем 
компромиссов между критериями эффективности.

Для проведения вычислительного эксперимента была выполнена программная  
реализация многокритериального алгоритма дождевых червей на языке Python. На основе 
входных данных сформированы маршруты, выполнена их оценка по трем критериям 
и осуществлен многокритериальный выбор лучшего. На рисунке 2(а) и рисунке 2(б) 
показаны три матрицы (расстояний, времени и сложности), лучшие по каждому критерию 
маршруты и маршрут, наилучший по всем критериям. На рисунке 3 показана визуализация  
маршрута, который является Парето-оптимальным по совокупности показателей.

Входные данные задаются матрицами L, T и D, элементы которых формируются 
псевдослучайным образом в заданных диапазонах. Это позволяет моделировать  
разные условия транспортной сети при сохранении общей структуры задачи. Каждое 
решение представляет собой перестановку узлов между фиксированными точками A и 
O, что обеспечивает однократное прохождение всех промежуточных узлов и корректное  
сравнение альтернативных маршрутов. Оценка качества маршрутов выполняется путем 
вычисления суммарного расстояния, времени и сложности, после которой формируется 
множество Парето-оптимальных решений. 

Результаты применения EWA к многокритериальной задаче маршрутизации показывают, 
что алгоритм устойчиво формирует множество качественных недоминируемых решений, 
отражающих баланс между протяженностью, временем и сложностью маршрута. 
Характерно наблюдение, что на начальных этапах поисковая активность алгоритма 
высока, что способствует генерации разнообразных маршрутов, а на поздних этапах 
усиливается локальный поиск, позволяющий улучшать структуру наиболее перспективных 
решений. Концентрация полученных маршрутов вблизи Парето-фронта подтверждает 
способность алгоритма эффективно исследовать сложные пространства поиска и находить  
компромиссные варианты.
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Рис. 2(а) – Результат работы программы
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Рис. 2(б) – Результат работы программы
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Рис. 3 – Визуализация наилучшего решения

Для количественной оценки эффективности предложенного биоинспирированного 
алгоритма дождевых червей был проведён сравнительный вычислительный эксперимент 
(Таблица 1). В качестве базовых методов сравнения использовались метаэвристические 
алгоритмы, наиболее часто применяемые для решения задачи коммивояжёра и задач 
маршрутизации в логистике возвратов, а именно алгоритмы имитации отжига, муравьиной 
колонии и роя частиц.

Таблица 1 
Результаты валидации разработанного метода 

Показатель EWA SA ACO PSO

Время выполнения алгоритма, мин. 4,5 3 5 4

Стоимость маршрута, усл. ед. 696 856 763 745

Совокупность полученных данных подтверждает, что алгоритм дождевых червей 
обладает значительными возможностями для применения в системах поддержки принятия 
решений, связанных с организацией возвратной логистики. Он способен адаптироваться 
к многокритериальным условиям, эффективно работать с перестановочными структурами 
и формировать устойчивые решения даже при высокой сложности задачи. Это делает EWA 
перспективным инструментом для анализа возвратных потоков в электронной коммерции 
и оптимизации траекторий движения товаров в рамках интеллектуальных транспортных  
систем.
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2. Применение нечеткого случайного леса для 
классификации причин возврата товара в электронной 

коммерции

 Одной из ключевых задач аналитики возвратов в электронной коммерции является 
корректная классификация причин возврата товаров. Результаты такой классификации 
используются при управлении качеством продукции, оптимизации логистических  
процессов и повышении удовлетворённости клиентов. В современной научной литературе 
[9-10] данная задача рассматривается в рамках задач классификации и интеллектуального 
анализа данных, для решения которых предложен широкий спектр методов.

Одним из перпективных инструментов для решения подобных задач является нечеткий 
случайный лес (Fuzzy Random Forest, FRF) [11], представляющий собой ансамбль нечетких 
деревьев решений. В отличие от одиночного нечеткого дерева, которое моделирует 
степень принадлежности объекта к определённым интервалам признаков, нечеткий 
случайный лес объединяет выводы множества таких деревьев, что существенно повышает 
точность, устойчивость и обобщающую способность модели. Применение FRF позволяет 
учитывать «размытый» характер данных о возвратах: фразы вида «качество скорее  
неудовлетворительное», «товар приблизительно соответствует описанию» или «скорость 
доставки была средняя» интерпретируются в терминах степеней принадлежности. Вместо 
того, чтобы жестко отнести объект к одному классу, модель анализирует вклад всех  
деревьев и всех листовых узлов.

Обобщенная математическая постановка задачи классификации выглядит следующим 
образом. Пусть имеется множество причин R и множество классов C, между которыми 
существует зависимость c*:R→C, известная на объектах выборки RS. Алгоритм alg:R→C, 
классифицирует любую причину r∈R.

Классические деревья решений предполагают строгое отнесение объекта к одному узлу 
и, соответственно, к одному классу. Однако в реальных данных о возвратах товаров такая  
жесткая схема часто оказывается неприемлемой. Причины возврата нередко выражены 
неоднозначно, формулировки клиентов могут быть интерпретированы сразу в нескольких 
контекстах, а часть признаков содержит шумы, пропуски или неточные значения. Более 
того, даже количественные показатели, такие как рейтинг качества, обладают субъективной 
природой, поскольку основаны на индивидуальном восприятии клиента. В результате 
традиционные модели теряют значительную долю информации, имеющую субъективный 
характер.

Нечеткие деревья решений позволяют смягчить указанные ограничения благодаря 
использованию лингвистических меток и функций принадлежности, определяющих степень 
соответствия признаков различным категориям [12]. Это делает возможным ситуацию,  
когда объект одновременно принадлежит нескольким ветвям дерева с разной  
интенсивностью, что обеспечивает более гибкую интерпретацию данных. Однако именно 
ансамблирование множества таких деревьев в структуре FRF делает классификацию 
гораздо более устойчивой, снижая влияние ошибок отдельных деревьев и расширяя охват 
конфигураций признаков.

Построение каждого дерева внутри FRF основано на использовании функций п 
ринадлежности и специальных нечетких критериев разделения, таких как Fuzzy Information 
Gain или Fuzzy Gini. Более продвинутые версии модели используют интуиционистские 
нечеткие множества (IFS) и критерии Intuitionistic Fuzzy Information Gain, учитывающие 
не только принадлежность объекта категории, но и степень непринадлежности и 
уровень неопределённости. Это делает деревья, а вместе с ними и весь ансамбль, менее  
чувствительными к вариативности данных.

При построении ансамблевых моделей, таких как нечеткий случайный лес, результаты 
классификации могут определяться с использованием различных схем голосования.  
На рисунке 4(а) и рисунке 4(б) представлены две такие схемы: во-первых, голосование на 
основе дерева, при котором итоговый класс определяется агрегированием весов, полученных 
от каждого дерева в целом; во-вторых, голосование на основе листьев, когда учитывается 
вклад веса каждого листа и дерева одновременно. Оба подхода позволяют учитывать 
степень принадлежности классу на разных уровнях структуры модели, что делает процесс 
классификации более гибким и информативным.
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Рис. 4(а) – Схемы голосования на основе дерева (а) и листьев (б)
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Рис. 4(б) – Схемы голосования на основе дерева (а) и листьев (б)

В контексте классификации причин возврата товаров нечеткий случайный лес оказывается 
эффективным, поскольку позволяет учитывать специфику данных, которые часто отличаются 
высокой степенью недостоверности, субъективности и неполноты. Клиент может указать  
лишь приблизительное описание проблемы, неверно интерпретировать ситуацию или опустить 
важные детали. Нечеткие модели способны работать с такими размытыми формулировками 
благодаря механизму степеней принадлежности, что уменьшает влияние субъективных 
ошибок пользователей.

Дополнительная сложность заключается в том, что данные о возвратах включают как 
количественные, так и качественные характеристики. Числовые показатели, такие как 
цена, рейтинг товара или скорость доставки, сосуществуют с разнородными текстовыми, 
эмоциональными оценками. FRF позволяет объединять эти различные типы признаков 
в едином аналитическом пространстве, преобразуя качественные параметры в нечеткие 
множества и интегрируя их с количественными.

Существенным преимуществом FRF является его интерпретируемость. Несмотря на 
ансамблевую структуру, отдельные деревья сохраняют прозрачность правил, что помогает 
объяснить причины отнесения объекта к определённому классу и выявить наиболее важные 
факторы возврата. Это делает модель полезной не только как классификатор, но и как 
инструмент объяснимой аналитики.

Нечеткие модели обладают высокой устойчивостью к шуму, пропускам и  
противоречивости данных, что особенно важно в электронной коммерции, где информация 
заполняется пользователями нерегулярно и может содержать многочисленные разночтения. 
Благодаря мягкому распределению объектов между категориями FRF сохраняет точность и 
стабильность анализа даже при существенных дефектах исходных данных.

Интеграция нечеткой логики с методом случайного леса позволяет значительно  
повысить точность классификации при наличии неоднозначных значений, пропусков и 
сложных нелинейных зависимостей. Ансамблевый подход усиливает устойчивость модели 
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к ошибкам отдельных деревьев, а нечеткая логика обеспечивает корректную обработку 
промежуточных состояний признаков, которые традиционные алгоритмы интерпретируют 
недостаточно корректно. Это делает FRF эффективным инструментом для анализа возвратов, 
поскольку он способен учитывать многообразие факторов, выявлять скрытые зависимости  
и обеспечивать надежные результаты в условиях высокой вариативности данных.

Программная реализация предложенного метода была выполнена на языке Python с 
использованием с библиотеками pandas, numpy, scikit-learn и fuzzydecisiontree. Проверка ее 
работоспособности проводилась на выборке в 2000 записей, которые были разделены на 10 
классов (результаты представлены в таблице 2).

Таблица 2 

Сравнение случайного леса и нечеткого случайного леса

Метод Точность Полнота Ошибка F-метрика

Случайный лес 0,77 0,74 0,23 0,76

Нечеткий случайный лес 0,84 0,80 0,16 0,82

Включение FRF в систему классификации причин возвратов существенно повышает 
качество аналитики. Модель естественным образом учитывает субъективность клиентских 
оценок, эффективно работает с неполными и неточными данными и способствует выявлению 
скрытых факторов, трудно обнаруживаемых традиционными методами. Прозрачность  
логики принятия решений облегчает разработку мер по снижению числа возвратов.

В совокупности эти свойства делают нечеткий случайный лес перспективным  
инструментом для классификации причин возврата товара. Он обеспечивает высокую  
точность анализа, выявляет скрытые закономерности, снижает влияние субъективности 
клиентов и способствует сокращению числа необоснованных возвратов за счёт более  
глубокого понимания механизмов их возникновения.

3. Архитектура системы поддержки принятия решений  
для управления возвратами

Управление возвратами в электронной коммерции представляет собой сложный 
многоэтапный процесс, включающий логистические операции, анализ клиентского 
поведения, контроль качества товаров, управление ассортиментом и организацию  
сервисного обслуживания. В условиях роста объёмов онлайн-продаж и повышения  
требований клиентов эффективное управление возвратами становится стратегической  
задачей, напрямую влияющей на финансовую устойчивость и конкурентоспособность 
компании. Именно поэтому всё большее значение приобретает внедрение систем поддержки 
принятия решений (СППР), способных обеспечить комплексный анализ данных и 
формирование обоснованных управленческих решений.

В отличие от распространённых корпоративных аналитических решений и BI-платформ, 
которые, как правило, ориентированы на ретроспективный анализ статистических 
показателей, предлагаемая СППР ориентирована на интеллектуальную обработку данных 
и формирование рекомендаций в условиях многокритериальности и неопределённости. 
Система использует методы искусственного интеллекта для одновременного решения двух 
ключевых задач управления возвратами: оптимизации маршрутов возвратной логистики 
и классификации причин возвратов товаров. Это принципиально отличает предложенную 
СППР от существующих решений, в которых данные задачи, как правило, рассматриваются 
разрозненно либо решаются с применением детерминированных или слабоадаптивных 
методов.

СППР, интегрированная в процесс возвратной логистики, выполняет роль  
интеллектуального посредника между различными подсистемами электронной коммерции: 
логистикой, клиентским сервисом, управлением каталогом товаров и аналитическими  
модулями. Основная задача такой системы заключается в том, чтобы предоставить  
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менеджменту доступ к релевантной, структурированной и интерпретируемой информации, 
обеспечив тем самым возможность оперативного и обоснованного принятия решений.  
В отличие от традиционных инструментов, ориентированных на простую обработку 
статистических показателей, СППР использует методы искусственного интеллекта, 
позволяющие выявлять скрытые зависимости, прогнозировать тенденции и оптимизировать 
операции в условиях многокритериальности и неопределённости [13].

В предлагаемой архитектуре СППР для управления возвратами используется сочетание 
двух интеллектуальных модулей: модуля оптимизации маршрутов, основанного на 
биоинспирированном алгоритме EWA, и модуля классификации причин возвратов, 
использующего нечеткий случайный лес. Первый модуль отвечает за формирование 
рациональных траекторий движения возвратного товара, позволяя снижать логистические 
издержки, уменьшать время возвратных операций и поддерживать устойчивость  
транспортной сети в условиях изменяющихся внешних факторов. Второй модуль ориентирован 
на анализ информации о причинах возвратов, что даёт возможность выявлять основные 
источники неудовлетворённости клиентов, определять факторы риска и формировать 
рекомендации, направленные на повышение качества ассортимента и совершенствование 
клиентского сервиса.

Архитектура СППР создаётся на основе модульного принципа, что обеспечивает 
её масштабируемость, гибкость и возможность интеграции с существующей цифровой 
инфраструктурой электронной коммерции. Каждый модуль выполняет специализированные 
задачи, однако их совместная работа формирует единое аналитическое пространство, 
позволяющее комплексно анализировать возвратные процессы и принимать управленческие 
решения на основе объективных данных.

На рисунке 5 представлена архитектура СППР. Модуль оптимизации маршрутов  
выступает центральным инструментом возвратной логистики. Используя матрицы расстояний, 
времени и сложности, он последовательно генерирует альтернативные маршруты, оценивает  
их на основе многокритериальной функции и формирует множество недоминируемых 
решений. Такой подход делает систему устойчивой к изменениям внешней среды, например, 
к пробкам, изменениям стоимости транспортировки или неравномерному распределению 
возвратных потоков. Итоговая информация, включающая сбалансированные по критериям 
маршруты, передаётся в интеграционный модуль.

Модуль классификации причин возвратов анализирует данные о текстовых описаниях, 
характеристиках товаров, параметрах заказа и профиле клиента. Использование нечетких 
деревьев решений позволяет учитывать неопределённость и субъективность данных, что 
особенно важно для задач, где причины возвратов формулируются клиентами неявно  
и неполно. На основе классификационных моделей система выявляет ключевые факторы 
возникновения возвратов и обеспечивает аналитическую поддержку при корректировке 
товарной политики, улучшении описаний и оптимизации процессов обслуживания клиентов.

Модуль визуализации предоставляет результаты работы интеллектуальных модулей в 
наглядной и структурированной форме. Интерфейс отображает матрицы расстояний, времени 
и сложности, наилучшие маршруты по каждому из критериев и рациональный по всем 
критериям, а также их и их графическое представление, распределение причин возвратов, 
структуру классификационных деревьев, динамику логистических метрик. Такая визуализация 
облегчает принятие решений специалистами, не обладающими глубокими знаниями в 
области анализа данных и машинного обучения, и способствует повышению прозрачности 
логистических процессов.

База данных возвратов и логистических сведений является фундаментом архитектуры. 
Она аккумулирует данные о товарах, заказах, клиентах, транспортной инфраструктуре и 
складах, а также результаты обработки возвратов. Хранилище обеспечивает единообразие 
данных и поддерживает взаимодействие с внешними и внутренними системами, включая 
WMS, ERP, торговые площадки и сервисы транспортных операторов. Это позволяет СППР 
функционировать в режиме регулярного обновления данных и поддерживать актуальность 
аналитических моделей.
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Рис. 5 – Архитектура СППР

Алгоритм взаимодействия модулей системы поддержки принятия решений основан на 
параллельной работе двух независимых аналитических цепочек. После поступления данных 
в хранилище выполняются этапы очистки и нормализации, формирующие единый массив 
структурированных и слабоструктурированных данных. Далее информация распределяется 
по двум направлениям анализа: первая часть данных, связанная с логистическими 
характеристиками транспортной сети, поступает в модуль оптимизации маршрутов, где 
биоинспирированный алгоритм дождевых червей осуществляет многокритериальную 
оптимизацию и формирует набор рациональных маршрутов возврата товара, вторая часть 
данных, содержащая текстовые описания, характеристики товаров и клиентские оценки, 
направляется в модуль классификации причин возвратов, в котором нечеткий случайный 
лес формируют интерпретируемую модель причин возврата и выявляют ключевые факторы, 
влияющие на их возникновение.

Результаты обоих модулей не объединяются в единое решение, поскольку они решают 
разные управленческие задачи. Модуль оптимизации предоставляет логистам лучшие 
маршруты возврата, а модуль классификации предлагает аналитические выводы о причинах 
возникновения возвратов и направлениях улучшения качества продукции или сервиса. 
Интеграционная подсистема отвечает лишь за согласованный доступ к результатам работы 
модулей, их одновременное отображение в едином интерфейсе и формирование комплексной 
картины возвратных потоков, не выполняя операции объединения данных или взаимного 
влияния результатов. В завершении анализа данные передаются в модуль визуализации, 
который отображает оптимальные маршруты, статистику причин возвратов и ключевые 
показатели эффективности. 

Интеграция системы поддержки принятия решений с существующими логистическими 
платформами и WMS является важным элементом её внедрения. Система взаимодействует  
с внешними источниками данных через API-интерфейсы, механизмы обмена сообщениями  
или ETL-процедуры, что позволяет автоматически получать сведения о возвратах, 
перемещениях товаров, статусах заказов, транспортных операциях и клиентских отзывах.  
Такое взаимодействие обеспечивает постоянное обновление базы данных, возможность 
оперативного пересчёта маршрутов, регулярное обновление классификационных моделей  
и использование актуальной информации в процессе принятия решений. Благодаря  
модульной структуре интеграция может выполняться поэтапно, без необходимости 
изменения всей ИТ-архитектуры предприятия. В результате эффективной интеграции и 
обеспечения актуальности данных все технические возможности системы трансформируются  
в конкретные экономические выгоды.

Экономическая эффективность внедрения СППР для управления возвратами проявляется 
через комплексный эффект, включающий снижение прямых издержек, уменьшение 



ИНТЕЛЛЕКТУАЛЬНЫЙ ТРАНСПОРТ � Выпуск 4 (36)  |  2025

— 40 —

логистических потерь, повышение качества клиентского сервиса и сокращение числа 
необоснованных возвратов. Комплексность эффекта объясняется системной природой 
изменений: СППР влияет как на оперативные процессы, так и на стратегические решения.

Прежде всего, применение модуля оптимизации маршрутов позволяет снизить 
транспортные расходы за счёт сокращения расстояния перевозки, уменьшения времени 
в пути и выбора маршрутов с минимальной логистической сложностью. В условиях 
высокой стоимости «последней мили» даже небольшое улучшение маршрута может дать  
значительный экономический эффект, особенно в крупных компаниях, обрабатывающих 
тысячи возвратных заказов ежедневно.

Вторым значимым компонентом экономического эффекта является снижение доли 
необоснованных или избыточных возвратов. Модуль классификации причин возврата  
выявляет скрытые закономерности в клиентском поведении, помогает обнаружить 
«проблемные» группы товаров, некорректные описания и ошибки сервиса. Это позволяет 
компании предпринять меры для улучшения качества контента, оптимизации упаковки, 
повышения точности характеристик, внедрения дополнительных фильтров при оформлении 
заказа или изменения условий взаимодействия с поставщиками. Снижение числа возвратов 
даже на 5-10% приводит к значительной экономии, поскольку возврат включает не только 
затраты на логистику, но и потери от обесценивания товара.

Дополнительный эффект создаётся за счёт ускорения принятия решений. Руководители 
получают доступ к визуализированным данным и рекомендациям в реальном времени, 
что позволяет оперативно корректировать логистические операции, уменьшать задержки 
и повышать оборачиваемость складских запасов. Повышается эффективность работы 
сотрудников, сокращается время на подготовку аналитических отчётов и ручной анализ 
данных.

Наконец, важным источником экономической выгоды является повышение уровня 
удовлетворенности клиентов. Классификация причин возвратов и улучшение качества 
коммуникаций приводит к росту лояльности потребителей, снижению риска ухода 
к конкурентам и повышению повторных покупок, что является одним из ключевых  
источников роста доходов в электронной коммерции.

Таким образом, экономическая оценка внедрения СППР демонстрирует выраженный 
положительный эффект за счет комплексного влияния системы на логистические, 
операционные и клиентские показатели. Реализация такой системы позволяет компаниям 
электронной коммерции существенно повысить эффективность управления возвратами и 
увеличить конкурентоспособность на насыщенном рынке.

Заключение 

Проведенное исследование показало, что сочетание биоинспирированных методов 
оптимизации и нечетких моделей классификации позволяет сформировать эффективную 
и устойчивую систему поддержки принятия решений для управления возвратами в  
электронной коммерции. Алгоритм дождевых червей показывает высокую адаптивность к 
условиям многокритериальной маршрутизации и способность формировать качественные 
решения даже в условиях огромного пространства поиска и нестабильной логистической 
среды. Это делает его перспективным инструментом для оптимизации возвратных потоков, 
где требуется учитывать расстояние, время и логистическую сложность одновременно.

Использование нечеткого случайного леса обеспечивает более точный и  
интерпретируемый анализ причин возвратов, позволяя работать с субъективной,  
лингвистически описанной и неполной информацией. Такие модели отражают реальную 
природу данных электронной коммерции, где информация нередко бывает размыта, 
неполна и зависит от индивидуального восприятия клиента. Интеграция нечетких методов с 
классическими ансамблевыми алгоритмами усиливает их устойчивость и точность, создавая 
аналитическую основу для сокращения числа возвратов и улучшения качества обслуживания.

Разработанная архитектура СППР демонстрирует способность объединять  
интеллектуальные модули в единую информационную систему, обеспечивающую 
комплексный анализ возвратов. Модульный принцип построения, поддержка интеграции с 
WMS, ERP и торговыми платформами, а также наличие развитой подсистемы визуализации 
обеспечивают высокую применимость системы в реальных условиях электронной  
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коммерции. Параллельная обработка логистических и аналитических данных позволяет 
получать актуальные рекомендации в реальном времени и принимать обоснованные 
управленческие решения.

Экономическая оценка показала, что внедрение СППР способствует снижению 
логистических расходов, уменьшению доли необоснованных возвратов, сокращению 
операционных задержек и повышению удовлетворённости клиентов. В совокупности 
эти факторы формируют значимый положительный эффект и повышают устойчивость и 
конкурентоспособность компании на рынке.

Таким образом, предложенная система поддержки принятия решений представляет  
собой комплексный инструмент для управления возвратами, объединяющий современные 
методы искусственного интеллекта и логистического анализа. Применение алгоритма 
дождевых червей и нечеткого случайного леса открывает новые возможности  
для повышения эффективности возвратной логистики, улучшения клиентского опыта и 
оптимизации операционной деятельности в электронной коммерции.

Исследование выполнено в рамках государственного задания Минобрнауки России 
(проект № FSWF-2023-0012).
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